Why is Buckminsterfullerene so Called?


by Dr.Badruddin Khan - Date: 2008-09-05 - Word Count: 970 Share This!

The carbon family consists of the five elements that make up Group 14 of the periodic table: carbon, silicon, germanium, tin, and lead. The family is particularly interesting because it consists of one nonmetal (carbon), two metals (tin and lead), and two metalloids (silicon and germanium). The atoms of all Group 14 elements have four electrons in their outermost energy level. In spite of this fact, the elements have less in common physically and chemically than do the members of most other families of elements.

Carbon is one of the most remarkable of all chemical elements. It occurs in all living organisms. In fact, the field of organic chemistry, which began as the study of the chemistry of plants and animals, can also be called the chemistry of carbon compounds. In addition, carbon and its compounds are of critical importance to the world as sources of energy. Coal, oil, and natural gas-the so-called fossil fuels-all consist of pure carbon or carbon compounds. Finally, carbon monoxide and carbon dioxide, the two oxides of carbon, are profoundly important not only in the survival of living organisms but also in a host of industrial operations. Carbon was one of the first elements known to humans. A Greek historian of the fourth century B.C., for example, tells of a natural gas well in Turkey that provided a perpetual flame for religious ceremonies. Many reports also detail the practice of mixing lampblack, a form of carbon, with olive oil and balsam gum to make a primitive form of ink. And diamonds, another form of carbon, are described in the Bible and even older Hindu manuscripts.

Carbon occurs both as an element and in combined forms. As an element, it exists in at least three different allotropic forms. The two best known allotropes of carbon are graphite and diamond. Graphite is a soft, shiny, dark gray or black, greasy-feeling mineral used to make the "lead" in lead pencils. Graphite is soft enough to be scratched with a fingernail. The second common allotrope of carbon is diamond. In striking contrast with graphite, diamond is the world's hardest natural material. Its ability to bend and spread light produces the spectacular rainbow "fire" that is often associated with diamond jewelry. Skillful gem cutters are able to cut and polish diamonds in a way that maximizes the effect of this natural property. In 1985, a third allotropic form of carbon was discovered. It is a 60-atom structure called buckminsterfullerene that looks like a soccer ball when viewed under a microscope.

To good fortune of one famous American, scientists discovered an entirely new form of carbon in 1985. Until that time, chemists had thought that carbon existed in only two solid forms: graphite and diamond. Then, researchers at Rice University in Texas and the University of Sussex in England found a strange-looking molecule consisting of 60 carbon atoms joined to each other in a large sphere. Under a microscope, the molecule looks like a soccer ball with 20 hexagons (six-sided figures) on its surface. The Rice and Sussex chemists suggested naming the new molecule after American engineer and philosopher R. Buckminster Fuller. Fuller had created a number of exciting new architectural forms, one of which was the geodesic dome. A geodesic dome, like the new molecule, is a sphere made of many plane figures like the hexagon. Because of this similarity, the new molecule was given the name buckminsterfullerene or, more briefly, fullerene. Less formally, the molecules are also known as Bucky-balls. The discovery of fullerenes has created a whole new field of chemistry that involves the study of "hollow" molecules in the shape of spheres or cylindrical rods. In the early 1990s, astronomers announced the discovery of fullerene molecules in outer space.

 

Carbon also occurs in a number of common compounds. Carbon dioxide, for example, is the fifth most abundant gas in the atmosphere. It makes up about 0.3 percent of the total volume of all atmospheric gases. Calcium carbonate is one of the most abundant of all rocks in Earth's crust. It occurs in a wide variety of forms, such as limestone, marble, travertine, chalk, and dolomite. Stalactites and stalagmites in caves are made of calcium carbonate, as are many animal products, such as coral, sea shells, egg shells, and pearls. Carbon exists abundantly in Earth's crust in the form of the fossil fuels. The fossil fuels are coal, oil, and natural gas. They have been given this name because they were apparently formed-in the absence of oxygen-by the slow decay of plant and animal forms that lived millions of years ago.

More than ten million compounds of carbon are now known. That number is far greater than the total of all noncarbon compounds that have been discovered. The special property that makes carbon so different from all other elements is the ability of its atoms to combine with each other in long chains. It is possible to find compounds in which two atoms of an element are joined to each other, but chains of more than two are rare. A chain of ten or more atoms (other than carbon) is virtually unheard of. Yet long chains of carbon atoms are the rule rather than the exception. For example, the protein molecules in your body consist of hundreds or thousands of carbon atoms connected to each other in a long chain.

Furthermore, carbon atoms can form structures more complicated than chains. Some compounds have carbon chains with other chains branching off from them, carbon chains joined tail-to-end in rings or rings inside of rings, carbon chains in the shape of cages, boxes, and spheres, and carbon chains in other strange and fascinating shapes. The interesting point is that these strange molecular structures are not just laboratory curiosities. In many cases, they are found in some of the most important compounds in living organisms.


Related Tags: carbon, lead, diamond, elements, gem, carbon monoxide, metals, fossil fuels, silicon, tin, graphite, array carbon dioxide, germanium, nonmetal, metalloids, organic chemistry, array allotropes, buckminsterfullerene, bucky-balls astronomers

Dr.Badruddin Khan teaches Chemistry in the University of Kashmir, Srinagar, India.

Your Article Search Directory : Find in Articles

© The article above is copyrighted by it's author. You're allowed to distribute this work according to the Creative Commons Attribution-NoDerivs license.
 

Recent articles in this category:



Most viewed articles in this category: